- Understanding distributions
- Assessing a model
- Causality and correlations

Five-figure summary

- Median
- Lower quartile
 - Marks the value that represents 25% of the data
- Upper quartile
 - Marks the value that represents 75% of the data
- Minimum observation
- Maximum observation

*mean is occasionally used and presented in a five-figure summary

Presenting the five figure summary

Ages:

8, 20, 82, 3, 17, 0, 0, 22, 12, 22, 54, 0, 32, 41

Presenting the five figure summary

Ages:

[0, 0, 0, **3**, 8, 12, <u>17]</u>, [<u>20</u>, 22, 22, **32**, 41, 54, 82]

Practice: Five figure summary

Let's plot our class' ideal temperature for spring!

You will need to calculate the:

- Median and mean
- Upper quartile
- Lower quartile
- Minimum observation
- Maximum observation

Practice: Five figure summary

60	65	Around 70 degrees	maybe around the 60s, 74 the highest	65
70 degrees	75 Fahrenheit	67	65 degrees!	22
65-70 Degrees	50-70 degrees	75 degree Fahrenheit	70 degrees	60 degrees Fahrenheit
60* F	I like it cool	65	70	62
70 degrees	65 degrees F	70	Between 57-62	67

Practice: Five figure summary

67	74	70	70	55-60 with a nice breeze
65	35	20	65 degrees	65
65-70	72	70	70 winds	70
50	60	50 degrees	70 degrees	70

Spread and Distribution

Purpose of standard deviation

Subject	Marks out of ten	Mean Average	Median average
French	2, 4, 5, 7, 7	5	5
Religious Studies	0, 5, 10, 7, 3	5	5
History	5, 5, 4, 6, 5	5	5

Calculating the standard deviation (population)

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n}}$$

Calculating the standard deviation

- Calculate the mean
- Calculate the deviation
 - Difference between the observation and the mean
- Calculate the sum of the squared deviation

Calculating the standard deviation

- Calculate the variance
 - How spread out is the data
- Calculate the standard deviation
 - Square root of variance

 $Variance = \frac{sum of the squared deviations}{number of observations}$

Understanding skewness and kurtosis

Skewness

Distribution of skew and kurtosis

Assessing a model

- An *impartial* jury should be representative of the population of the relevant region
 - Final trial jury selected from group of prospective jurors by deliberate inclusion/exclusion

- Supreme Court case of Robert Swain
 - Black men convicted and sentenced to death by all white jury in Talladega County, Alabama, 1962
 - Alabama supreme court declared that that jury was constitutionally composed

At the time of this trial

- Only men aged 21 and above and eligible
- 26% of the men in the population identified as Black
- Yet, only 8% of the representative population of eligible jurors were Black

U.S. Supreme Court concluded ""the overall percentage disparity has been small."

With a population of whom 26% are Black, how likely is it to draw a panel that Black folx only make up 8%?

- 1. Simulate data based on the model
 - a. 26% Black, 74% White and others
- 2. Simulate drawing at random from this population
- 3. Demonstrate the chances of this panel (8%) being selected at random
 - a. Is this panel likely to happen at random (therefore small disparity)?

Prediction under model of random selection

Comparing the prediction and data

So, what can we conclude?

- If we select a panel of size 100 at random it is *very unlikely* to get the counts that we saw at Robert Swain's trial
 - Very unlikely that this panel is drawn by chance, with the model of random selection we simulated
- We can reasonably assume that this panel was *not selected* by random sampling from eligible jurors
 - Difference between 26% and 8% is not so small as to be explained well by chance alone

Why did this happen?

- Jury panels selected from a jury roll of names that jury commissioners acquired
 - Often in favor of people in the commissioners' social and professional circles
- When there are Black panelists in the selection pool, most don't make it to the final jury panel

Causality and correlations

John Snow and the Broad Street pump

Correlations ≠ causation

- Observational studies can help us establish a link between 2 variables
 - Could be 2 phenomenons happening at the same time
 - Not always a situation where phenomenon A causes phenomenon B

Correlations ≠ causation

- Confounding factor(s)
 - Coffee and lung cancer
 - Ice cream sales and rate of drowning

Role of randomization

- Assignning individuals to the treatment and control groups at random
- Randomized controlled trial (RCT) v. observational study
 - Treatment groups
 - Control groups

Role of randomization

- To account—mathematically—for the possibility that randomization produces treatment and control groups that are quite different from each other
- To make precise mathematical statements about differences between the treatment and control groups
 - Statistically significant
 - Make justifiable conclusions about whether the treatment has any effect