- Five-figure summary
- Understanding distributions

Central tendency: Types of averages

- Mean:
- Total of observations divided by total number of observations
- Median:
- The middle observation
- Mode:
- The most frequent observation

Practice: Types of averages

What is the most appropriate measure of central tendency for each situation?

- Ideal temperature for Spring
- Fruit for the class
- Confidence in cooking

Five-figure summary

- Median
- Lower quartile
- Marks the value that represents 25% of the data
- Upper quartile
- Marks the value that represents 75% of the data
- Minimum observation
- Maximum observation
*mean is occasionally used and presented in a five-figure summary

Presenting the five figure summary

Ages:

$8,20,82,3,17,0,0$,
22, 12, 22, 54, 0, 32, 41

Practice: Five figure summary

Let's plot our class' ideal temperature for spring!
You will need to calculate the:

- Median and mean
- Upper quartile
- Lower quartile
- Minimum observation
- Maximum observation

Practice: Five figure summary

60	65	Around 70 degrees	maybe around the 60s, 74 the highest	65
70 degrees	75 Fahrenheit	67	65 degrees!	22
$65-70$ Degrees	$50-70$ degrees	75 degree Fahrenheit	70 degrees	60 degrees Fahrenheit
$60^{*} F$	I like it cool	65	70	62
70 degrees	65 degrees F	70	Between $57-62$	67

Practice: Five figure summary

67	74	70	70	$55-60$ with a nice breeze
65	35	20	65 degrees	65
$65-70$	72	70	70 winds	70
50	60	50 degrees	70 degrees	70

Spread and Distribution

Purpose of standard deviation

Subject	Marks out of ten	Mean Average	Median average
French	$2,4,5,7,7$	5	5
Religious Studies	$0,5,10,7,3$	5	5
History	$5,5,4,6,5$	5	5

Calculating the standard deviation (population)

$$
\sigma=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}{n}}
$$

Calculating the standard deviation

- Calculate the mean
- Calculate the deviation
- Difference between the observation and the mean
- Calculate the sum of the squared deviation

Calculating the standard deviation

- Calculate the variance
- How spread out is the data
- Calculate the standard deviation

$$
\text { Variance }=\frac{\text { sum of the squared deviations }}{\text { number of observations }}
$$

- Square root of variance

Calculate the standard deviation

Subject	Marks out of ten	Mean Average	Median average
French	$2,4,5,7,7$	5	5
Religious Studies	$0,5,10,7,3$	5	5
History	$5,5,4,6,5$	5	5

Understanding skewness and kurtosis

Skewness

Distribution of skew and kurtosis

